Abstract

The respiratory complex I is an enzyme responsible for the conversion of chemical energy into an electrochemical proton motive force across the membrane. Despite extensive studies, the mechanism by which the activity of this enormous, ca. 1 MDa, redox-coupled proton pump is regulated still remains unclear. Recent structural studies (Zhu et al., Nature 2016; Fiedorczuk et al., Nature 2016) resolved complex I in different conformations connected to the active-to-deactive (A/D) transition that regulate complex I activity in several species. Based on anisotropic network models (ANM) and principal component analysis (PCA), we identify here transitions between experimentally resolved structures of the mammalian complex I as low-frequency collective motions of the enzyme, highlighting similarities and differences between the bacterial and mammalian enzymes. Despite the reduced complexity of the smaller bacterial enzyme, our results suggest that the global dynamics of complex I is overall conserved. We further probe how the supernumerary subunits could be involved in the modulation of the A/D-transition, and show that in particular the 42 kDa and B13 subunits affect the global motions of the mammalian enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.