Abstract

Environmental stresses significantly affect plant growth, development, and productivity. Therefore, a deeper understanding of the underlying stress responses at the molecular level is needed. In this study, to identify critical genetic factors associated with environmental stress responses, the entire 737.3 Gb clean RNA-seq dataset across abiotic, biotic stress, and phytohormone conditions in Capsicum annuum was used to perform individual differentially expressed gene analysis and to construct gene co-expression networks for each stress condition. Subsequently, gene networks were reconstructed around transcription factors to identify critical factors involved in the stress responses, including the NLR gene family, previously implicated in resistance. The abiotic and biotic stress networks comprise 233 and 597 hubs respectively, with 10 and 89 NLRs. Each gene within the NLR groups in the network exhibited substantial expression to particular stresses. The integrated analysis strategy of the transcriptome network revealed potential key genes for complex environmental conditions. Together, this could provide important clues to uncover novel key factors using high-throughput transcriptome data in other species as well as plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call