Abstract

The global push towards a more biomass-based energy sector is ramping up efforts to adopt regionally appropriate high-yielding crops. As potential bioenergy crops are being moved around the world an assessment of the climatic suitability would be a prudent first step in identifying suitable areas of productivity and risk. Additionally, this assessment also provides a necessary step in evaluating the invasive potential of bioenergy crops, which present a possible negative externality to the bioeconomy. Therefore, we provide the first global climate niche assessment for the major graminaceous (9), herbaceous (3), and woody (4) bioenergy crops. Additionally, we contrast these with climate niche assessments for North American invasive species that were originally introduced for agronomic purposes as examples of well-intentioned introductions gone awry. With few exceptions (e.g., Saccharum officinarum, Pennisetum purpureum), the bioenergy crops exhibit broad climatic tolerance, which allows tremendous flexibility in choosing crops, especially in areas with high summer rainfall and long growing seasons (e.g., southeastern US, Amazon Basin, eastern Australia). Unsurprisingly, the invasive species of agronomic origin have very similar global climate niche profiles as the proposed bioenergy crops, also demonstrating broad climatic tolerance. The ecoregional evaluation of bioenergy crops and known invasive species demonstrates tremendous overlap at both high (EI≥30) and moderate (EI≥20) climate suitability. The southern and western US ecoregions support the greatest number of invasive species of agronomic origin, especially the Southeastern USA Plains, Mixed Woods Plains, and Mediterranean California. Many regions of the world have a suitable climate for several bioenergy crops allowing selection of agro-ecoregionally appropriate crops. This model knowingly ignores the complex biotic interactions and edaphic conditions, but provides a robust assessment of the climate niche, which is valuable for agronomists, crop developers, and regulators seeking to choose agro-ecoregionally appropriate crops while minimizing the risk of invasive species.

Highlights

  • The global energy sector is trending toward incorporation of increasing amounts of renewable energy, of which bioenergy— energy yielded from biological sources—is a growing component [1]

  • The ‘‘perennial water scenario’’, which mimics both irrigation additions as well as access to a permanent water supply [18], typically expanded the climate niche to regions that are arid during the growing season, but are otherwise suitable: western United States (US), northern Africa, central and western Australia, and the Middle East (Figs. 1, 2, 3)

  • The climate niche for the bioenergy crops evaluated demonstrates that temperate to sub-tropical regions of the world that receive consistent summer rainfall and have a warm/hot summer and a long growing season will be most favorable, and will provide the greatest number of feedstock choices without the need for consistent summer irrigation

Read more

Summary

Introduction

The global energy sector is trending toward incorporation of increasing amounts of renewable energy, of which bioenergy— energy yielded from biological sources—is a growing component [1]. The United States (US) currently produces 4% (3.2 EJ) of its total energy from biomass [2], but has mandated 136 billion liters of renewable liquid transportation fuels by 2022, which may require up to 60 million additional hectares of land [3]. This additional cropland will not be evenly distributed across the US due to climatic variation, land availability, and resource requirements (e.g., irrigation). No global assessment of large-scale suitability for a variety of herbaceous, grass, and woody species has been conducted

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call