Abstract

The vacuum free boundary problem of one-dimensional non-isentropic compressible Navier-Stokes equations with large initial data is investigated in this paper. The fluid is initially assumed to occupy a finite interval and connect to the vacuum continuously at the free boundary, which is often considered in the gas-vacuum interface problem. Using the method of Lagrangian particle path, we derive some point-wise estimates and weighted spatial and time energy estimates for the classical solutions. Then the global existence and uniqueness of classical solutions are shown, and the expanding speed for the free boundary is proved to be finite. The main difficulty of this problem is the degeneracy of the system near the free boundary. Previous results are only for the solutions with low regularity (cf. [G. Q. Chen and M. Kratka, Commun. Partial Differ. Equations. 27 907–943 (2002)]).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call