Abstract
This paper considers the Cauchy problem for the quasilinear hyperbolic system of balance laws in Rd, d≥2. The system is partially dissipative in the sense that there is an eigen-family violating the Kawashima condition. By imposing certain supplementary degeneracy conditions with respect to the non-dissipative eigen-family, global unique smooth solutions near constant equilibria are constructed. The proof is based on the introduction of the partially normalized coordinates, a delicate structural analysis, a family of scaled energy estimates with minimum fractional derivative counts and a refined decay estimates of the dissipative components of the solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.