Abstract

A novelGlobal Chassis Control(GCC) system based on a multilayer architecture with three levels: top: decision layer, middle: control layer, and bottom: system layer is presented. The main contribution of this work is the development of a data-based classification and coordination algorithm, into a single control problem. Based on a clustering technique, the decision layer classifies the current driving condition. Afterwards, heuristic rules are used to coordinate the performance of the considered vehicle subsystems (suspension, steering, and braking) using local controllers hosted in the control layer. The control allocation system uses fuzzy logic controllers. The performance of the proposed GCC system was evaluated under different standard tests. Simulation results illustrate the effectiveness of the proposed system compared to an uncontrolled vehicle and a vehicle with a noncoordinated control. The proposed system decreases by 14% the braking distance in the hard braking test with respect to the uncontrolled vehicle, the roll and yaw movements are reduced by 10% and 12%, respectively, in the Double Line Change test, and the oscillations caused by load transfer are reduced by 7% in a cornering situation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.