Abstract

Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.

Highlights

  • The concentration of carbon dioxide (CO2) in the atmosphere has increased from approximately 277 parts per million in 1750 (Joos and Spahni, 2008), the beginning of the industrial era, to 405.0 ± 0.1 ppm in 2017 (Dlugokencky and Tans, 2018; Fig. 1)

  • The main changes are (1) the inclusion of data to the year 2017 and a projection for the global carbon budget for the year 2018; (2) the introduction of metrics that evaluate components of the individual models used to estimate SOCEAN and SLAND using observations, as an effort to document, encourage, and support model improvements through time; (3) the revisions of the CO2 emissions associated with cement production based on revised clinker ratios; (4) a projection for fossil fuel emissions for the 28 European Union member states based on compiled energy statistics; and (5) the addition of Sect. 2.8.2 on additional emissions from calcination not included in the budget

  • From 2012, the budget year (Carbon Budget 2012) refers to the initial publication year. b The CDIAC database has about 250 countries, but we show data for 213 countries since we aggregate and disaggregate some countries to be consistent with current country definitions. c emissions from land use and land-use change (ELUC) is still estimated based on bookkeeping models as in 2017, but the number of dynamic global vegetation models (DGVMs) used to characterise the uncertainty has changed

Read more

Summary

Introduction

The concentration of carbon dioxide (CO2) in the atmosphere has increased from approximately 277 parts per million (ppm) in 1750 (Joos and Spahni, 2008), the beginning of the industrial era, to 405.0 ± 0.1 ppm in 2017 (Dlugokencky and Tans, 2018; Fig. 1). The global carbon budget presented here refers to the mean, variations, and trends in the perturbation of CO2 in the environment, referenced to the beginning of the industrial era It quantifies the input of CO2 to the atmosphere by emissions from human activities, the growth rate of atmospheric CO2 concentration, and the resulting changes in the storage of carbon in the land and ocean reservoirs in response to increasing atmospheric CO2 levels, climate change, and variability and other anthropogenic and natural changes (Fig. 2). An understanding of this perturbation budget over time and the underlying variability and trends in the natural carbon cycle is necessary to understand the response of natural sinks to changes in climate, CO2 and land-use change drivers, and the permissible emissions for a given climate stabilisation target

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call