Abstract

The global bifurcations in mode interaction of a simply supported rectangular metallic plate subjected to a transverse harmonic excitation are investigated with the case of the 1:1 internal resonance, the average equations representing the evolution of the amplitudes and phases of the interacting normal modes exhibiting complex dynamics. A global perturbation method, i.e., the higher-dimensional Melnikov method and its extensions proposed by Kovacic and Wiggins, is utilized to analyze the global bifurcations for the rectangular metallic plate. A sufficient condition for the existence of a Silnikov-type homoclinic orbit is obtained, which implies that chaotic motions may occur for this class of rectangular metallic plates. Finally, numerical results are presented to confirm these analytical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.