Abstract
We consider an autoparametric system which consists of an oscillator coupled with a parametrically excited subsystem. The oscillator and the subsystem are in one-to-one internal resonance. The excited subsystem is in principal parametric resonance. The system contains the most general type of quadratic and cubic non-linearities. The method of second-order averaging is used to yield a set of autonomous equations of the second-order approximations to the parametric excited system with autoparametric resonance. The Shilnikov-type multi-pulse orbits and chaotic dynamics of the averaged equations are studied in detail. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Shilnikov-type multi-pulse homoclinic orbits in the averaged equations. The results obtained above mean the existence of amplitude-modulated chaos in the Smale horseshoe sense in the parametric excited system with autoparametric resonance. The Shilnikov-type multi-pulse chaotic motions of the parametric excited system with autoparametric resonance are also found by using numerical simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.