Abstract

Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural frequencies, is considered. The damping force is not included in the analysis. The method of multiple scales is used to obtain an autonomous system from a non-autonomous system of ordinary differential equations governing non-linear oscillations of an imperfect circular plate. The Melnikov's method for heteroclinic orbits of the autonomous system is used to obtain the criteria for chaotic motion. It is shown that the existence of heteroclinic orbits in the unperturbed system implies chaos arising from breaking of heteroclinic orbits under perturbation. The validity of the result is checked numerically. It is also observed numerically that chaos can appear due to breaking of invariant tori under perturbation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.