Abstract
Existence of nontrivial nonnegative equilibrium solutions for age-structured population models with nonlinear diffusion is investigated. Introducing a parameter measuring the intensity of the fertility, global bifurcation is shown of a branch of positive equilibrium solutions emanating from the trivial equilibrium. Moreover, for the parameter-independent model we establish existence of positive equilibria by means of a fixed point theorem for conical shells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.