Abstract

Chlorine is the commonest and cheapest disinfectant used in drinking water and wastewater treatment at household, municipal and industrial levels. However, the uprising of microbial chlorine resistance (MCR) pose critical public health hazard concerns; because, its potentiate exposure to difficult-to-treat resistant pathogens. Therefore, this study aimed at evaluating the burden of MCR in drinking water/wastewater treatment and distribution systems (DWWTDS) via science mapping of research productivity (authors, countries, institutions), thematic conceptual framework, disciplines, research networks and associated intellectual landscape. MCR data were mined from Scopus and Web of Science based on optimized algorithms with the root key term “chlorine* resistant*’’ and analysed for pre-set indicator variables. Results revealed 1127 documents from 442 journals and 1430% average growth rate (AGR) of research articles from 2017 to 2019 on MCR. Country-wise, the USA (n = 299), China (n = 119), and Japan (n = 43) ranked in the 1st, 2nd, and 3rd positions respectively, among the top participating countries in MCR research. MCR research had considerable performance in public health and sustainable concern subjects namely, Environmental Sciences & Ecology, Engineering, Microbiology, Water Resources, Biotechnology & Applied Microbiology, Food Science & Technology, Public, Environ & Occupational Health, Chemistry, Infectious Diseases, and Marine & Freshwater Biology; and with noticeable AGR in Environmental Sciences & Ecology (330%) and Infectious Diseases (130%). The study found biofilm-related thrusts (n = 90, 270% AGR) as main research hotspots on MCR. Overall, the study identified and discussed four important thematic areas of public health challenges in MCR that could promote increasing waterborne diseases due to (re)emerging pathogens, enteric viruses and dissemination in DWWTDS. In conclusion, this study provides comprehensive overview of the growing burden of MCR in DWWTDS and standout as a primer of information for researchers on MCR. It recommends direct, intentional and integrated research priorities on MCR to overcome accompanying public health and environmental threats. In addition, chlorine resistance in waterborne fungi have not received research attention. Research activities related to fungal chlorine resistance will be an invaluable future direction in DWWTDS and guide against exposure to waterborne pathogenic fungi and mycotoxins. It is unknown whether chlorine resistance can be acquired by horizontal gene transfer in microorganisms and future research should elucidate this important thrust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.