Abstract

Motivated by the recent paper [M.R.S. Kulenović, M. Nurkanović, and A.A. Yakubu, Asymptotic behaviour of a discrete-time density-dependent SI epidemic model with constant recruitment, J. Appl. Math. Comput. 67 (2021), pp. 733–753. DOI:10.1007/s12190-021-01503-2], in this paper, we consider the class of the SI epidemic models with recruitment where the Poisson function, a decreasing exponential function of the population of infectious individuals, is replaced by a general probability function that satisfies certain conditions. We compute the basic reproduction number We establish the global asymptotic stability of the disease-free equilibrium (GAS) for We use the Lyapunov function method developed in [P. van den Driessche and A.-A. Yakubu, Disease extinction versus persistence in discrete-time epidemic models, Bull. Math. Biol. 81 (2019), pp. 4412–4446], to demonstrate the GAS of the disease-free equilibrium and uniform persistence of the considered class of models. We show that the considered type of model is permanent for . For the transcritical bifurcation appears. For we prove the global attractivity result for endemic equilibrium and instability of the disease-free equilibrium. We apply theoretical results to specific escape functions of the susceptibles from infectious individuals. For each case, we compute the basic reproduction number .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.