Abstract
This paper investigates the well-posedness and long-time dynamics of a wave model with nonlocal nonlinear damping: utt−Δu+σ(‖∇u‖2)g(ut)+f(u)=h(x). For a new exponent p⁎=6γγ+1(≥3), where γ∈[1,5) is the growth index of the nonlinear damping term g(ut), it shows that, as the growth exponent p of the nonlinearity f(u) satisfies 2≤p≤p⁎, the problem is well-posed and has a global attractor in the natural energy space H=H01(Ω)×L2(Ω).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.