Abstract

Let f be an orientation-preserving Morse-Smale diffeomorphism of an n-dimensional (n ≥ 3) closed orientable manifold M n . We show the possibility of representing the dynamics of f in a “source-sink” form. The roles of the “source” and “sink” are played by invariant closed sets one of which, A f , is an attractor, and the other, R f , is a repeller. Such a representation reveals new topological invariants that describe the embedding (possibly, wild) of stable and unstable manifolds of saddle periodic points in the ambient manifold. These invariants have allowed us to obtain a classification of substantial classes of Morse-Smale diffeomorphisms on 3-manifolds. In this paper, for any n ≥ 3, we describe the topological structure of the sets A f and R f and of the space of orbits that belong to the set M n \ (A f ∪ R f ).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.