Abstract

The Szegő–Askey polynomials are orthogonal polynomials on the unit circle. In this paper, we study their asymptotic behavior by knowing only their weight function. Using the Riemann–Hilbert method, we obtain global asymptotic formulas in terms of Bessel functions and elementary functions for z in two overlapping regions, which together cover the whole complex plane. Our results agree with those obtained earlier by Temme [Uniform asymptotic expansion for a class of polynomials biorthogonal on the unit circle, Constr. Approx. 2 (1986) 369–376]. Temme's approach started from an explicit expression of the Szegő–Askey polynomials in terms of an2F1-function, and followed by integral methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.