Abstract

In this paper, we develop a hybrid controller for global asymptotic stabilization on the n-dimensional sphere $(\mathbb{S}^{n})$ using synergistic potential functions. These consist of a collection of potential functions on $\mathbb{S}^{n}$ that induce a gradient descent controller during flows of the hybrid closed-loop system and a switching law that, at undesired equilibrium points of the gradient vector field, jumps to the lowest value among all the potential functions in the collection. We show that the proposed controller can be used for global reduced attitude synchronization, i.e., given a network of rigid-bodies, the proposed synergistic hybrid feedback can be used to globally synchronize a reference direction of each agent within a global but unknown inertial reference frame. We study this application for a network of three vehicles by means of simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.