Abstract

Competitive neural networks have become increasingly popular since this kind of neural networks can better describe the dynamics of cortical cognitive maps with unsupervised synaptic modifications. In this paper, we first propose fractional-order competitive neural networks with multiple time-varying-delay links and explore the global asymptotic stability of this class of neural networks. A novel and generalized integral inequality related to every upper bound of each time-varying delay is given. Moreover, based on Lyapunov method and graph theory, we obtain some sufficient conditions with the help of this integral inequality to guarantee the global asymptotic stability. The theoretical results offer a new perspective to show the close relationship between the stability criterion and the topological structure of networks. Finally, an illustrative numerical example is given to demonstrate the feasibility and effectiveness of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.