Abstract

This paper is concerned with the global asymptotic stability of a class of Cohen-Grossberg neural networks with both multiple time-varying delays and continuously distributed delays. Two classes of amplification functions are considered, and some sufficient stability criteria are established to ensure the global asymptotic stability of the concerned neural networks, which can be expressed in the form of linear matrix inequality and are easy to check. Furthermore, some sufficient conditions guaranteeing the global robust stability are also established in the case of parameter uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.