Abstract
We consider the family of difference equations of the form x n+1= ∑ i=0 i≠j,j−1 k x n−i+x n−j+1x n−j+1 ∑ i=0 k x n−i , j=1,2,…,k, where n∈{0,1,…}, k∈{1,2,…} and the initial values x − k , x − k+1 ,…, x 0 are positive real numbers. For these difference equations, we investigate the oscillatory behavior of the positive solutions and prove that the unique equilibrium x ̄ =1 is globally asymptotically stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.