Abstract

Aromaticity is one of the most important concepts in organic chemistry to understand the electronic properties of cyclic π-conjugated molecules. Over a century, different aromaticity rules have been developed and validated. For planar monocyclic conjugated polyenes (also known as [n]annulenes), they will be aromatic if they contain [4N + 2] π electrons according to Hückel's rule, or antiaromatic if they have [4N] π electrons. Topological change from a planar to a half-twisted Möbius strip will lead to [4N] ([4N + 2]) aromaticity (antiaromaticity), which is just inverse to Hückel's rule. When the molecules are excited into the first triplet excited state, the Hückel (anti)aromaticity observed in the ground state will become reversed according to Baird's rule. Strictly speaking, these basic rules are only applicable for monocyclic conjugated systems, but some polycyclic systems such as porphyrinoids may also follow these rules if there is a dominant [n]annulene-like conjugation pathway. On the other hand, all-benzenoid polycyclic aromatic hydrocarbons usually display local aromaticity with π electrons predominantly localized at certain benzene rings according to Clar's aromatic sextet rule. In recent years, some proaromatic and antiaromatic molecules with even number of paired electrons have been found to exhibit open-shell diradical character and unique optical, electronic, and magnetic activities. One of the major driving forces is their intrinsic tendency to become aromatic in the open-shell diradical/polyradical forms. A number of stable diradicaloids and linear polyradicaloids have been successfully synthesized by using thermodynamic and kinetic stabilizing strategies. Herein, our particular interest is a type of macrocyclic polyradicaloid in which multiple frontier π-electrons are antiferromagnetically coupled with each other in a cyclic mode. Formally, these free electrons may behave like normal π-electrons in the [n]annulenes, and thus, it raises questions about their possible global aromaticity and which rule they will follow. In the past 5 years, our group has synthesized a series of macrocyclic polyradicaloids and systematically investigated their global aromaticity and electronic properties. Some important findings include: (1) global (anti)aromaticity is generally observed, but there is a balance between local aromaticity and global aromaticity; (2) most of these molecules follow Hückel's rule in the singlet state and display respective (anti)aromatic characteristics; (3) in some special cases, both Hückel's rule and Baird's rule can be applicable, and a unique annulene-within-an-annulene super-ring structure was demonstrated for the first time; (4) global antiaromaticity in the transition state is also important and a slow valence tautomerization process was observed in a supercyclobutadiene tetraradicaloid. These studies demonstrate how these open-shell macrocyclic polyradicaloids adapt their geometry and spin state to reach the lowest-energy state (aromatic). In this Account, we will mainly discuss their synthesis, global aromaticity, and the fundamental structure-radical character-aromaticity-properties relationships. Various experimental methods (e.g., NMR, X-ray crystallographic analysis, and electronic absorption spectroscopy) and theoretical calculations (e.g., anisotropy of the induced current density, nucleus independent chemical shift, and isochemical shielding surface) have been used to elaborate their (anti)aromatic character. At the end, a perspective on the possible three-dimensional global aromaticity in fully conjugated cagelike diradicaloids or polyradicaloids will be also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call