Abstract

Over 16,000 wrinkle ridges on Mars have been classified, mapped, and digitized to provide a large computer-accessible data base for analyzing regions subjected to possible compressive stresses. The survey has revealed major compressive structures that occur well beyond the Tharsis-dominated hemisphere. The large variety of affected geologic terrains indicate stresses not simply localized in the intercrater plains. One major area of inferred compression occurs in the southern cratered highlands near longitude 180°W where major ridges and scarps extend over 3000 km. The occurrence and orientation of many ridges are locally controlled by ancient impact basins. The Chryse basin in particular has an important effect on ridges in northern Lunae Planum. The removal of all basin-concentric ridges reveals, however, a complex global pattern. Although such patterns may yet be controlled by heavily degraded impact basins, major regional trends also emerge that appear to require broader scale global stresses. Most ridges in the Western Hemisphere are shown to be orthogonal to three centers corresponding to Tharsis (1°N, 122°W), Syria (12°S, 104°W), and Chryse (19°N, 47°W). Ridges not included in these three sets are generally more random and highly localized. Most, but by no means all, ridges in the Eastern Hemisphere are controlled by the Hellas and Isidis basins. A simple global grid is not yet identifiable and may not be recognizable owing to the large number of regional patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call