Abstract

We present global and regional gravity field models to degree 130 based on the GOCE kinematic orbit from the period 01 November 2009 to 11 January 2010. The gravity field models are parameterized in terms of the Shannon and Kaula's spherical radial basis functions. The relation between the unknown expansion coefficients and the kinematic orbit of the satellite is established by the acceleration approach. We show that our global GOCE-only solutions free from prior information can compete with unconstrained spherical harmonic models in terms of accuracy. Furthermore, we utilize our low-degree global GOCE-based models to introduce prior information into the least-squares adjustment. This procedure substantially improves the zonal and near-zonal spherical harmonic coefficients, which are usually degraded due to the polar gap problem. As an unwanted side effect, low-pass filtering of the geopotential may occur, but this can be adjusted by the spectral content of the prior information. We show that the regional enhancement of the global solutions reduces noise in the final model between degrees 70 and 130 by ~10 % in terms of RMS error. In general, our Shannon-based solutions systematically outperform the Kaula-based ones. To validate our results, we use the EIGEN-6S model, which is superior to the solutions from kinematic orbits at least by one order of magnitude. Both the global and the regional models satisfy the GOCE-only strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.