Abstract

Both ventricular fibrillation cardiac arrest (VFCA) and asphyxial cardiac arrest (ACA) are frequent causes of CA. However, only isolated reports compared cerebral blood flow (CBF) reperfusion patterns after different types of CA, and even fewer reports used methods that allow serial and regional assessment of CBF. We hypothesized that the reperfusion patterns of CBF will differ between individual types of experimental CA. In a prospective block-randomized study, fentanyl-anesthetized adult rats were subjected to 8min VFCA or ACA. Rats were then resuscitated with epinephrine, bicarbonate, manual chest compressions and mechanical ventilation. After the return of spontaneous circulation, CBF was then serially assessed via arterial spin-labeling magnetic resonance imaging (ASL-MRI) in cortex, thalamus, hippocampus and amygdala/piriform complex over 1h resuscitation time (RT). Both ACA and VFCA produced significant temporal and regional differences in CBF. All regions in both models showed significant changes over time (p<0.01), with early hyperperfusion and delayed hypoperfusion. ACA resulted in early hyperperfusion in cortex and thalamus (both p<0.05 vs. amygdala/piriform complex). In contrast, VFCA induced early hyperperfusion only in cortex (p<0.05 vs. other regions). Hyperperfusion was prolonged after ACA, peaking at 7min RT (RT7; 199% vs. BL, Baseline, in cortex and 201% in thalamus, p<0.05), then returning close to BL at ∼RT15. In contrast, VFCA model induced mild hyperemia, peaking at RT7 (141% vs. BL in cortex). Both ACA and VFCA showed delayed hypoperfusion (ACA, ∼30% below BL in hippocampus and amygdala/piriform complex, p<0.05; VFCA, 34–41% below BL in hippocampus and amygdala/piriform complex, p<0.05). In conclusion, both ACA and VFCA in adult rats produced significant regional and temporal differences in CBF. In ACA, hyperperfusion was most pronounced in cortex and thalamus. In VFCA, the changes were more modest, with hyperperfusion seen only in cortex. Both insults resulted in delayed hypoperfusion in all regions. Both early hyperperfusion and delayed hypoperfusion may be important therapeutic targets.This study was approved by the University of Pittsburgh IACUC 1008816-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.