Abstract

The main purpose of this study is to analyze the global and local statistical properties of nonparametric smoothers subject to a priori fixed length restriction. In order to do so, we introduce a set of local statistical measures based on their weighting system shapes and weight values. In this way, the local statistical measures of bias, variance and mean square error are intrinsic to the smoothers and independent of the data to which they will be applied on. One major advantage of the statistical measures relative to the classical spectral ones is their easiness of calculation. However, in this paper we use both in a complementary manner. The smoothers studied are based on two broad classes of weighting generating functions, local polynomials and probability distributions. We consider within the first class, the locally weighted regression smoother (loess) of degree 1 and 2 (L1 and L2), the cubic smoothing spline (CSS), and the Henderson smoothing linear filter (H); and in the second class, the Gaussian kernel (GK). The weighting systems of these estimators depend on a smoothing parameter that traditionally, is estimated by means of data dependent optimization criteria. However, by imposing to all of them the condition of an equal number of weights, it will be shown that some of their optimal statistical properties are no longer valid. Without any loss of generality, the analysis is carried out for 13- and 9-term lengths because these are the most often selected for the Henderson filters in the context of monthly time series decomposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.