Abstract

PurposeThe objectives of this paper are the application of sensitivity analysis (SA) methods in atmospheric dispersion modeling to the emission dispersion model (EDM) to study the prediction of atmospheric dispersion of NO2 generated by an industrial fire, whose results are useful for fire safety applications. The EDM is used to predict the level concentration of nitrogen dioxide (NO2) emitted by an industrial fire in a plant located in an industrial region site in Algeria.Design/methodology/approachThe SA was defined for the following input parameters: wind speed, NO2 emission rate and viscosity and diffusivity coefficients by simulating the air quality impacts of fire on an industrial area. Two SA methods are used: a local SA by using a one at a time technique and a global SA, for which correlation analysis was conducted on the EDM using the standardized regression coefficient.FindingsThe study demonstrates that, under ordinary weather conditions and for the fields near to the fire, the NO2 initial concentration has the most influence on the predicted NO2 levels than any other model input. Whereas, for the far field, the initial concentration and the wind speed have the most impact on the NO2 concentration estimation.Originality/valueThe study shows that an effective decision-making process should not be only based on the mean values, but it should, in particular, consider the upper bound plume concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.