Abstract

The eigenvalue probability density function (PDF) for the Gaussian unitary ensemble has a well-known analogy with the Boltzmann factor for a classical log-gas with pair potential [Formula: see text], confined by a one-body harmonic potential. A generalization is to replace the pair potential by [Formula: see text]. The resulting PDF first appeared in the statistical physics literature in relation to non-intersecting Brownian walkers, equally spaced at time [Formula: see text], and subsequently in the study of quantum many-body systems of the Calogero–Sutherland type, and also in Chern–Simons field theory. It is an example of a determinantal point process with correlation kernel based on the Stieltjes–Wigert polynomials. We take up the problem of determining the moments of this ensemble, and find an exact expression in terms of a particular little q-Jacobi polynomial. From their large N form, the global density can be computed. Previous work has evaluated the edge scaling limit of the correlation kernel in terms of the Ramanujan ([Formula: see text]-Airy) function. We show how in a particular [Formula: see text] scaling limit, this reduces to the Airy kernel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.