Abstract

The effective modal fusion and perception between the language and the image are necessary for inferring the reference instance in the referring image segmentation (RIS) task. In this article, we propose a novel RIS network, the global and local interactive perception network (GLIPN), to enhance the quality of modal fusion between the language and the image from the local and global perspectives. The core of GLIPN is the global and local interactive perception (GLIP) scheme. Specifically, the GLIP scheme contains the local perception module (LPM) and the global perception module (GPM). The LPM is designed to enhance the local modal fusion by the correspondence between word and image local semantics. The GPM is designed to inject the global structured semantics of images into the modal fusion process, which can better guide the word embedding to perceive the whole image's global structure. Combined with the local-global context semantics fusion, extensive experiments on several benchmark datasets demonstrate the advantage of the proposed GLIPN over most state-of-the-art approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.