Abstract

This paper elucidates the global and local interactive buckling behavior of a stiff film resting on a compliant substrate under uniaxial compression. The resulting governing non-linear equations (non-autonomous fourth-order ordinary differential nonlinear equations with integral conditions) are then solved by introducing a continuation algorithm, which offers considerable advantages to detect multiple bifurcations and trace a complex post-buckling path. The critical conditions for local and global buckling and respective post-buckling equilibrium paths are carefully studied. Two different evolution mechanisms of buckling modes and processes from destabilization to restabilization (snap-back) are observed beyond the onset of the primary sinusoidal wrinkling mode in the post-buckling range. In addition, the shear modulus of an orthotropic substrate acts as a dominant role in the bifurcation portrait. Our results offer better understanding of the global and local buckling behaviors of such a bilayer system, and can open up new opportunities for the design and applications of novel nanoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call