Abstract

New hierarchical solid modeling operations are developed, which simulate twisting, bending, tapering, or similar transformations of geometric objects. The chief result is that the normal vector of an arbitrarily deformed smooth surface can be calculated directly from the surface normal vector of the undeformed surface and a transformation matrix. Deformations are easily combined in a hierarchical structure, creating complex objects from simpler ones. The position vectors and normal vectors in the simpler objects are used to calculate the position and normal vectors in the more complex forms; each level in the deformation hierarchy requires an additional matrix multiply for the normal vector calculation. Deformations are important and highly intuitive operations which ease the control and rendering of large families of three-dimensional geometric shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.