Abstract

This paper deals with both global and local versions of an energetic analytical model to quantify the damage caused to reinforced concrete (RC) structures under monotonic, cyclic, or fatigue loading. The proposed model closely represents the damage to structures, and presents a damage index (DI) formulation for the RC members. The model is based on the cumulative energy absorbed by the structure. The data required to apply the model can be obtained either from numerical simulation or from experimental test. A computer program has been developed to simulate numerically the response of RC members under cyclic loading. In the program, the non-linear behavior of the materials and the structure involved are taken into account. The proposed numerical simulation model was verified by comparison with practical tests undertaken by other researchers on over 20 full-scale RC columns. The comparison demonstrates that the model provides a realistic estimation of the damage of the RC structural members. The comparison between values of the proposed DI calculated based on experimental test data and numerical simulation results shows that to calculate DI, it is not necessary to perform expensive experimental tests, employing a non-linear structural numerical simulation program is sufficient. The proposed DI is also compared to a damage model proposed by Meyer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.