Abstract

Registered by the World Health Organization (WHO), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) is one of the strongest bacterial mutagens ever tested, as highlighted by the Ames Salmonella typhimurium TA100 assay. We provide new insights concerning this mutagenic activity on the basis of global and local theoretically defined electrophilicity indices. Our results further support the idea that mutagenicity of MX and its analogues is related more closely to one-electron transfer processes from the electron-rich biological environment than to adduct formation processes. We also stress that, although the Z-open tautomers are intrinsically more electrophilic than furanone ring analogues, the observed mutagenic activity is significantly correlated only to the electrophilicity response of the ring forms. In that context, we also emphasize that it is electrophilicity at the C α in the α-β unsaturated carbonyl moiety that exhibits a strong correlation with the observed mutagenic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.