Abstract

Profiling substrate diffusion pathways with kinetic information, which accounts for the dynamic nature of enzyme–substrate interaction, can enable molecular reengineering of enzymes and process optimization of enzymatic catalysis. Candida antarctica lipase B (CALB) is extensively used for producing various chemicals because of its rich catalytic mechanisms, broad substrate spectrum, thermal stability, and tolerance to organic solvents. In this study, an all-atom molecular dynamics (MD) combined with Markov-state models (MSMs) implemented in pyEMMA was proposed to simulate diffusion pathways of 4-nitrophenyl ester (4NPE), a commonly used substrate, from the surface into the active site of CALB. Six important metastable conformations of CALB were identified in the diffusion process, including a closed state. An induced-fit mechanism incorporating multiple pathways with molecular information was proposed, which might find unprecedented applications for the rational design of lipase for green catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.