Abstract

The analytical, full-dimensional, and global representation of the potential energy surface of NH(3) in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD(T)) and the method of multireference configuration interaction (MRCI). CCSD(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20,000 hc cm(–1). MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10,000 geometries at the CCSD(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r(eq)(NH(3)) ≈ 101.28 pm, α(eq)(NH(3)) ≈ 107.03°, the inversion barrier at r(inv)(NH(3)) ≈ 99.88 pm and 1774 hc cm(–1) above the NH(3) minimum, and dissociation channel energies 41,051 hc cm(–1) (for NH(3) → ((2)B(2))NH(2) + ((2)S(1/2))H) and 38,450 hc cm(–1) (for NH(3) → ((3)Σ(–))NH +((1)Σ(g)(+))H(2)); the average agreement between calculated and experimental vibrational line positions is 11 cm(–1) for (14)N(1)H(3) in the spectral region up to 5000 cm(–1). A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call