Abstract

We consider real analytic involutive structures 𝒱, of co-rank one, defined on a real analytic paracompact orientable manifold M. To each such structure we associate certain connected subsets of M which we call the level sets of 𝒱. We prove that analytic regularity propagates along them. With a further assumption on the level sets of 𝒱 we characterize the global analytic hypoellipticity of a differential operator naturally associated to 𝒱. As an application we study a case of tube structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.