Abstract

Deer antlers are unique mammalian appendages that grow faster than any other known organ. During the rapid growth stage at 60 days after casting the previous antler, the maximal antler growth rate is up to or even more than 2 cm/day. Antler growth is driven by the growth center located in the antler tip. The growth center consists of several tissue layers from distal to proximal, including the skin, mesenchyme, precartilage, and cartilage. To analyze the gene expression patterns of the antler growth center in a tissue-differential manner and explore the molecular mechanism responsible for rapid antler growth, we used an RNA-Seq method to analyze gene expression patterns in different tissues of the Sika deer antler growth center during the rapid growth stage. We demonstrated considerable diversity in the expression levels of functional genes among different tissues within the antler growth center. These tissue-differentially expressed genes included transcription factors, growth factors, and extracellular matrix proteins. We identified a series of genes that contribute to chondrogenesis from mesenchymal cell condensation to chondrocyte differentiation. The genes identified in the antler growth center at the rapid growth stage provide valuable insight into the physiological mechanisms underlying rapid antler growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.