Abstract

We investigate a model arising from biology, which is a hyperbolic-parabolic coupled system. First, we prove the global existence and asymptotic behavior of smooth solutions to the Cauchy problem without any smallness assumption on the initial data. Second, if the Hs ∩ L1-norm of initial data is sufficiently small, we also establish decay rates of the global smooth solutions. In particular, the optimal L2 decay rate of the solution and the almost optimal L2 decay rate of the first-order derivatives of the solution are obtained. These results are obtained by constructing a new nonnegative convex entropy and combining spectral analysis with energy methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.