Abstract

In a three dimensional framework of finite deformation configurations, this paper investigates the secondary bifurcation of a uniform, isotropic and linearly elastic bar under compression in a large range of parameters. The governing differential equations and finite dimensional equations of this problem are discussed. It is found that, for a bar with two ends hinged, usually many secondary bifurcation points appear on the primary branches which correspond to the maximum bending stiffness. Results are shown on parameter charts. Secondary modes and branches are also calculated with numerical methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.