Abstract

In this contribution, we employ computational tools from the energy landscape approach to test Gaussian Approximation Potentials (GAPs) for C60. In particular, we apply basin-hopping global optimization and explore the landscape starting from the low-lying minima using discrete path sampling. We exploit existing databases of minima and transition states harvested from previous work using tight-binding potentials. We explore the energy landscape for the full range of structures and pathways spanning from the buckminsterfullerene global minimum up to buckybowls. In the initial GAP model, the fullerene part of the landscape is reproduced quite well. However, there are extensive families of C1@C59 and C2@C58 structures that lie lower in energy. We succeeded in refining the potential to remove these artifacts by simply including two minima from the C2@C58 families found by global landscape exploration. We suggest that the energy landscape approach could be used systematically to test and improve machine learning interatomic potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.