Abstract

BackgroundLiver fibrosis is caused by chemicals or viral infection. The progression of liver fibrosis results in hepatocellular carcinogenesis in later stages. Recent studies have revealed the importance of DNA hypermethylation in the progression of liver fibrosis to hepatocellular carcinoma (HCC). However, the importance of DNA methylation in the early-stage liver fibrosis remains unclear.MethodsTo address this issue, we used a pathological mouse model of early-stage liver fibrosis that was induced by treatment with carbon tetrachloride (CCl4) for 2 weeks and performed a genome-wide analysis of DNA methylation status. This global analysis of DNA methylation was performed using a combination of methyl-binding protein (MBP)-based high throughput sequencing (MBP-seq) and bioinformatic tools, IPA and Oncomine. To confirm functional aspect of MBP-seq data, we complementary used biochemical methods, such as bisulfite modification and in-vitro-methylation assays.ResultsThe genome-wide analysis revealed that DNA methylation status was reduced throughout the genome because of CCl4 treatment in the early-stage liver fibrosis. Bioinformatic and biochemical analyses revealed that a gene associated with fibrosis, secreted phosphoprotein 1 (Spp1), which induces inflammation, was hypomethylated and its expression was up-regulated. These results suggest that DNA hypomethylation of the genes responsible for fibrosis may precede the onset of liver fibrosis. Moreover, Spp1 is also known to enhance tumor development. Using the web-based database, we revealed that Spp1 expression is increased in HCC.ConclusionsOur study suggests that hypomethylation is crucial for the onset of and in the progression of liver fibrosis to HCC. The elucidation of this change in methylation status from the onset of fibrosis and subsequent progression to HCC may lead to a new clinical diagnosis.

Highlights

  • Liver fibrosis is caused by chemicals or viral infection

  • A liver injury activates the Kupffer cells–resident macrophages of the liver sinusoids–thereby inducing inflammation [5]. This inflammatory response triggers the activation of hepatic stellate cells (HSCs), which play a key role in fibrogenesis by transdifferentiating into myofibroblasts [1]

  • Analyzing the MBPseq data, we revealed that the DNA methylation status was reduced throughout the genome, and that the enhancer of secreted phosphoprotein 1 (Spp1), known as osteopontin, was hypomethylated

Read more

Summary

Introduction

The progression of liver fibrosis results in hepatocellular carcinogenesis in later stages. Recent studies have revealed the importance of DNA hypermethylation in the progression of liver fibrosis to hepatocellular carcinoma (HCC). In particular, has been extensively investigated because its progression results in hepatocellular carcinoma (HCC), which is the fifth most common cancer worldwide [2,3]. A liver injury activates the Kupffer cells–resident macrophages of the liver sinusoids–thereby inducing inflammation [5]. This inflammatory response triggers the activation of hepatic stellate cells (HSCs), which play a key role in fibrogenesis by transdifferentiating into myofibroblasts [1]. The proliferation of myofibroblasts and stimulation of ECM synthesis, results in liver fibrosis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.