Abstract

By introducing the probability function describing latency of infected cells, we unify some models of viral infection with latent stage. For the case that the probability function is a step function, which implies that the latency period of the infected cells is constant, the corresponding model is a delay differential system. The model with delay of latency and two types of target cells is investigated, and the obtained results show that when the basic reproduction number is less than or equal to unity, the infection-free equilibrium is globally stable, that is, the in-host free virus will be cleared out finally; when the basic reproduction number is greater than unity, the infection equilibrium is globally stable, that is, the viral infection will be chronic and persist in-host. And by comparing the basic reproduction numbers of ordinary differential system and the associated delayed differential system, we think that it is necessary to elect an appropriate type of probability function for predicting the final outcome of viral infection in-host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.