Abstract
We consider the Rayleigh equation x ¨ + λ ( x ˙ 2 / 3 − 1 ) x ˙ + x = 0 depending on the real parameter λ and construct a Poincaré–Bendixson annulus A λ in the phase plane containing the unique limit cycle Γ λ of the Rayleigh equation for all λ > 0 . The novelty of this annulus consists in the fact that its boundaries are algebraic curves depending on λ . The polynomial defining the interior boundary represents a special Dulac–Cherkas function for the Rayleigh equation which immediately implies that the Rayleigh equation has at most one limit cycle. The outer boundary is the diffeomorphic image of the corresponding boundary for the van der Pol equation. Additionally we present some equations which are linearly topologically equivalent to the Rayleigh equation and provide also for these equations global algebraic Poincaré–Bendixson annuli.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Journal of Qualitative Theory of Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.