Abstract

We present a novel global non-rigid registration method for dynamic 3D objects. Our method allows objects to undergo large non-rigid deformations and achieves high-quality results even with substantial pose change or camera motion between views. In addition, our method does not require a template prior and uses less raw data than tracking-based methods since only a sparse set of scans is needed. We simultaneously compute the deformations of all the scans by optimizing a global alignment problem to avoid the well-known loop closure problem and use an as-rigid-as-possible constraint to eliminate the shrinkage problem of the deformed shapes, especially near open boundaries of scans. To cope with large-scale problems, we design a coarse-to-fine multi-resolution scheme, which also avoids the optimization being trapped into local minima. The proposed method is evaluated on public datasets and real datasets captured by an RGB-D sensor. The experimental results demonstrate that the proposed method obtains better results than several state-of-the-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call