Abstract

The transcriptional factor PPAR-γ belongs to the nuclear receptor family, which has become a potential therapeutic target for several neurodegenerative diseases and metabolic disorders. Interestingly, PPAR-γ has been reported to have beneficial effects in various chronic neurological conditions via upregulation of its transcriptional co-activator PGC-1α and followed by regulation of multiple molecular events. Although several factors contribute to the progression of neurodegeneration, the dysfunction of PGC-1α expression is primarily interlinked with the pathogenesis of major neurodegenerative diseases. This review gives an insight that ligand-dependent activation of PPAR-γ by glitazones could initiate the structural conformational changes of the secondary proteins, thus recruiting the PGC-1α to form a stable regulatory complex that hampers the various molecular pathways contributing to neurodegeneration. The promising outcomes of the preliminary in silico studies included in this review support that PPAR-γ dependent activation of central PGC-1α signaling by novel glitazones is an encouraging strategy to enhance the oxy-radicals detoxifying system, antiinflammatory responses, and mitochondrial biogenesis required for neuroprotection in various neurodegenerative conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.