Abstract

Midline glia are a source of cues for neuronal navigation and differentiation in the Drosophila CNS. Despite their importance, how glia and neurons communicate during the development is not fully understood. Here, we examined dynamic morphology of midline glia and assessed their direct cellular interactions with neurons within the embryonic CNS. Midline glia extend filopodia-like “gliopodia” from the onset of axogenesis through the near completion of embryonic neural development. The most abundant and stable within the commissures, gliopodia frequently contact neurites extending from the neuropil on either side of the midline. Misexpression of Rac1 N17 in midline glia not only reduces the number of gliopodia but also shifts the position of neuropils towards the midline. Midline-secreted signaling protein Slit accumulates along the surface of gliopodia. Mutant analysis supports the idea that gliopodia contribute to its presentation on neuronal surfaces at both the commissures and neuropils. We propose that gliopodia extend the range of direct glia–neuron communication during CNS development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.