Abstract

The aim of the present study was to determine the possible mechanism underlying the enhanced migration and proliferation of endothelial cells caused by glioma stem cells (GSCs). Tumor spheres enriched in GSCs derived from the mouse GL261 glioma cell line, and the brain microvessel endothelial cell line, b.END3, were used in this study. A Transwell co-culture system, RNAi experiments, quantitative polymerase chain reaction, western blotting and enzyme-linked immunosorbent, cell counting kit-8 (CCK-8) proliferation, Transwell migration and wound-healing assays were used in this study to determine the migration and proliferation ability, as well as the Hedgehog (HH) pathway-related gene expression in the b.END3 cells. Based on the results, it was demonstrated that the migration and proliferation of the endothelial cells were enhanced following co-culture with GSCs. The gene expression of the HH pathway-related genes, Sonic Hedgehog (Shh) and Hedgehog-interacting protein (Hhip) was altered in the endothelial cells when co-cultured with GSCs. Overexpression of glioma-associated oncogene homolog 1 indicated activation of the HH pathway. Following knockdown of smoothened (Smo) in the endothelial cells, the migration and proliferation abilities of the cells were inhibited. GSCs have little effect on enhancing these behaviors in endothelial cells following Smo-knockdown. Further investigation revealed that Shh levels in the supernatant of the co-culture system were elevated, indicating the importance of secreted Shh from the endothelial cells. In conclusion, GSCs enhanced the migration and proliferation of the endothelial cells in vitro, which was likely associated with the activation of the HH pathway in the endothelial cells, caused by the increased secretion of Shh.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call