Abstract

Human brain tumors appear to have a hierarchical cellular organization suggestive of a stem cell foundation. In vitro expansion of the putative cancer stem cells as stable cell lines would provide a powerful model system to study their biology. Here, we demonstrate routine and efficient derivation of adherent cell lines from malignant glioma that display stem cell properties and initiate high-grade gliomas following xenotransplantation. Significantly, glioma neural stem (GNS) cell lines from different tumors exhibit divergent gene expression signatures and differentiation behavior that correlate with specific neural progenitor subtypes. The diversity of gliomas may, therefore, reflect distinct cancer stem cell phenotypes. The purity and stability of adherent GNS cell lines offer significant advantages compared to "sphere" cultures, enabling refined studies of cancer stem cell behavior. A proof-of-principle live cell imaging-based chemical screen (450 FDA-approved drugs) identifies both differential sensitivities of GNS cells and a common susceptibility to perturbation of serotonin signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.