Abstract

BackgroundGlioma (GBM) is the most prevalent malignancy worldwide with high morbidity and mortality. Exosome-mediated transfer of long noncoding RNA (lncRNA) has been reported to be associated with human cancers, containing GBM. Meanwhile, myeloid-derived suppressor cells (MDSCs) play a vital role in mediating the immunosuppressive environments in GBM. ObjectivesThis study is designed to explore the role and mechanism of exosomal (Exo) lncRNA AGAP2-AS1 on the MDSC pathway in GBM. MethodsAGAP2-AS1, microRNA-486-3p (miR-486-3p), and Transforming growth factor beta-1 (TGF-β1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, migration, and invasion were detected by 5-ethynyl-2′-deoxyuridine (EdU), flow cytometry, and Transwell assays. E-cadherin, Vimentin, CD9, CD81, and TGF-β1 protein levels were examined using Western blot. Exosomes were detected by a transmission electron microscope (TEM). Binding between miR-486-3p and AGAP2-AS1 or TGF-β1 was predicted by LncBase or TargetScan and then verified using a dual-luciferase reporter assay. ResultsAGAP2-AS1 was highly expressed in GBM tissues and cells. Functionally, AGAP2-AS1 absence or TGF-β1 knockdown repressed tumor cell growth and metastasis. Furthermore, Exo-AGAP2-AS1 from GBM cells regulated TGF-β1 expression via sponging miR-486-3p in MDSCs. Exo-AGAP2-AS1 upregulation facilitated GBM cell growth and metastasis via the MDSC pathway. ConclusionExo-AGAP2-AS1 boosted GBM cell development partly by regulating the MDSC pathway, hinting at a promising therapeutic target for GBM treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call