Abstract

AbstractThe uncontrolled growth of cells in brain regions leads to the tumor regions and these abnormal tumor regions are scanned by magnetic resonance imaging (MRI) technique as an image. This paper proposes random forest classifier based Glioma brain tumor detection and segmentation methodology using feature optimization technique. The texture features are derived from brain MRI image and these derived feature set are now optimized by ant colony optimization algorithm. These optimized set of features are trained and classified using random forest classification method. This classifier classifies the brain MRI image into Glioma or non‐Glioma image based on the optimized set of features. Furthermore, energy‐based segmentation method is applied on the classified Glioma image for segmenting the tumor regions. The proposed methodology for Glioma brain tumor stated in this paper achieves 97.7% of sensitivity, 96.5% of specificity, and 98.01% of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.