Abstract

Lipocortin 1 (LC1) and S100- β, two Ca 2+-binding proteins that serve as specific markers for microglia and astrocytes, respectively, have been used to study postnatal gliogenesis in the rat optic nerve. Computerized image analysis was used to quantify and map the stained and unstained glia in transverse sections (10 μm thick) taken 1–2 mm from the chiasm in optic nerves from rat pups at postnatal day 0 (P0), P7, P14, P21, P28, P38 and adults. The number of astrocytes was remarkably constant (100 per section) at all ages. Because the area of the nerve increases 10-fold from P0 to adult, the population density of astrocytes begins at >5000 mm −2 and drops to 400 mm −2 in the mature nerve; however, because the nerve length increases two-fold, the number of astrocytes doubles over the same period. In contrast, the number of LC1+ cells per section initially is sparse (4 at P0), increases rapidly up to 36 at P21 and levels off at 49 in adults. The microglia population density is relatively stable throughout development (200–300 mm −2) except during the peak of oligodendroblast apoptosis (P21) when it rises to 450 mm −2. Neonatally, LC1 immunoreactivity predominantly labels spherical-ameboid cells; but by P28 they are replaced by mature ramified microglia. The number of unstained cells (putative oligodendrocytes) per section increases from 11 at P0 to a peak of 308 at P21, and declines slightly to 269 in adults. While generally confirming concepts of astrocyte and oligodendrocyte ontogeny from the literature, the present report adds considerable detail regarding microglia, which often have been ignored. Microglia identified by LC1 immunoreactivity comprise 12% of the glia in adult optic nerve near the chiasm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.